
,D-Ai3i 377 TEST5 FOR EXPONENTIRLITY WHEN ORIGIN AND SCALE i/i
PARAMETERS ARE UNKNOWN(U) STANFORD UNIV CA DEPT OF
STATISTICS J SPINELLI ET AL. 02 AUG 83 TR-336

UNCLASSIFIED N88614-76-C-0475 F/G 12/1i N

EMEND



.lis 1161 LIS
L 136 2

W.3

L.

*1.

2 1111~1.25 L11 A 16

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-I963-A

*A_



II

TESTS FO . IAL1TY 'E, 0IGIN A:D SCALE
PARAMETERS ARE U-IKNOWN

r BY

JOHN SPINELLI and MICHAEL A. STEPHENS

TECHNICAL REPORT NO. 336

AUGUST 2, 1983

- PREPARED UNDER CONTRACT

N00014-76-C-0475 (NR-042-267)

* FOR THE OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted

. .~for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPART7IENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CAL IFORNIA ELA ECTE98

p I -

""~

~~~~~U 16_____



--- V- - -. -- -;- - . 7T

,, Aoe-c I .. ,, r;

DT "" T, *

2J wl !r j~
, J. UStlIfliQac ivn_

Distribution/ # ./
Availlability Codes

Dlst pcw
TESTS FOR EXPONENTIALITY WHEN ORIGIN AND SCALE

PARAMETERS ARE UNKNOWN

BY

JOHN SPINELLI and MICHAEL A. STEPHENS

TECHNICAL REPORT NO. 336

AUGUST 2, 1983

Prepared Under Contract

N00014-76-C-0475 (NR-042-267)

For the Office of Naval Research

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government.

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS

Stanford University

Stanford, Cali forni a

I



BLAN~K P



4

TESTS FOR EXPONENTIALITY WHEN ORIGIN AND SCALE

PARAMETERS ARE UNKNOWN

By

John Spinelli and

Michael A. Stephens

1. INTRODUCTION

A test of exponentiality is a test of Ho; a given random sample

of n values of x comes from the exponential distribution

-(1) F(x) - 1 - exp(-(x-A)/B), x > A

where B is a positive constant. This distribution will be referred

to as exp(A,B), and A is the origin of the distribution. Through-

out the paper we shall suppose the sample has been labelled in ascending

order, so that A < x1 < x2 < -.. < xn

Many tests of the above null hypothesis H have been proposed
0

in the literature; in the great majority of these tests, B is unknown,

and A is known. Then without loss of generality A can be assumed

zero; if A is not zero the substitution y, - x,-A produces a

sample of ordered y-values from exp(O,B) when H is true. The0

parameter B is either estimated directly from the sample or is

eliminated by exploiting connections between the exponential and the

uniform distributions.

In this paper we discuss tests when both A and B are unknown.

These tests have so far not been considered extensively, and a possible

reason for this is because a simple device exists to change a test of

F .- .-



H with A unknown into a test with A -O. This is to make the0

substitution vi = x i+ 1 , - ...,n-l; it is a well known result

that this substitution produces, on H0 , an ordered random sample of

n-1 values of v from exp(O,B). Thus the test of H can be reduced
0

to a test that the vi come from exp(O,B), B unknown, using any of

the many tests of this hypothesis that have been proposed. This method

of dealing with the unknown A we shall call Method 1. Although

Method 1 eliminates A, it may not necessarily give the most powerful

test of Ho, and we therefore investigate two main alternative

approaches, in which A is estimated directly rather than eliminated.

The first of these alternatives, which we shall call Method 2, is to

estimate A and B, and then to use tests based on the empirical distri-

bution function (EDF). A second alternative, called Method 3, is to

use a test based on a regression of the order statistics Xl.9..xn

on suitable constants along the horizontal axis. For example, the

order statistics may be regressed against mi where mi is the

expected value of the i-th order statistic from exp(Ol). On Ho,

we have

(E(xi) A+hi

where E denotes expectation, and suitable test statistics are measures

of how well the order statistics fit the line (2). One such statistic,

for example, is the Shapiro-Wilk (1972) statistic WE, and other

statistics recently proposed in the literature are measures of the

correlation between xt and m, or between xi and statistics

4 2
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similar to a1 . Statistics based on these methods vil be called

regression statistics. In the next section the procedure is given

for calculating EDF statistics; in section 3 regression statistics

are described, and In section 4 we compare the methods.
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2. EDF STATISTICS.

EDF statistics are statistics based on the discrepancy between

the distribution (1) above, with estimates used for A and B, and

the empirical distribution function of the sample of x-values. Many

statistics have been proposed to measure this discrepancy, and we

here concentrate on those which are usually called D+, D7, D, V,

W2, U2 and A2 . The formal procedure for calculating these statis-

tics is as follows:

(a) Calculate the following estimates of A and B:

n n

- n(x-x )/(n-1) and A- x -B/n, where x- xIn.

(b) Calculate

Wt W (xi-k)/B and I  1- exp(-vt), for i 1,...,n.

(c) The test statistics are then given by the following formulas:

i+
D= maa<= < [(i/n) - zI

D- - axl<i<n zt - (1-1)/n]

D - max(D,D - )

V eD+D -

W2 _ n21-1 2

il(z -2 + 12n

2 n
S2 . W2 - n ( - 2  where z- z /n

2 1

A" - . (2 1-1)(- n z +ln(l-z )-n.
n- 1 n+l-i
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The estimates A and B given above are derived from generalized

least squares; they can be obtained also from the maximum likelihood

estimates, modified to make than unbiased. The distributions of the

test statistics, on H0, will depend on n but not on the true values

of A and B. These distributions are, for finite n, difficult to

find, but asymptotic theory is available for the statistics W 2, U2

and A2. The asymptotic distributions are the same as those tabulated

*under the heading Case 4 by Stephens (1974, 1976); Case 4 refers to

the situation in which A is zero and only B is estimated by maximum

likelihood. The introduction of the new estimate A, in addition to

B, does not effect the asymptotic distribution, because A has

variance of the order 1/n2 . and so is super-efficient in the nota-

tion of Darling (1955). However, for finite n there will be some

difference in the null distributions, and these have been found by

Monte Carlo methods. A list of upper tail percentage points is given

in Tables 1 and 2. The slight difference in values of the asymptotic

distributions for W 2, U 2  and 2represents an improvement in the

calculations of these points since the appearance of Stephens (1974),

K although use of the earlier points makes only a very small difference

In a-values. W2has also been examined by Van Soest (1969), who

gave asymptotic theory and Monte Carlo points for n - 10 and 20. For

AnD , AD, and AnD the asymptotic points have been found by extra-

polating exact points given by Durbin (1975) for Case 4.

The test of fit therefore consists of calculating the appropriate

statistic required, as described above, and referring either to Table 1

for direct percentage points, or calculating the modified form of the

5
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test statistic as given in Table 2 and referring to the asymptotic

points only. The modifications are very useful when making a

* computer program for the tests.

Examle.We illustrate the procedure on the set of data, kindly

provided by Dr. W.G. Warren, listed in Table 3. There are n - 32

observations, measurements of modulus of rupture of wood beams. From
A

the data we have x - 94.878; then B - 53.356 and A - 41.523. The

EDF statistics have values VnD+ - 1.115, AD_ - 1.989, /nD - 1.989,

/nV - 3.104, W2 - 1.066, U2 -0.780 , A2 - 5.097. Reference to Tables

1 and 2 show all these statistics to be highly significant and we

reject the null hypothesis that the values are exponentially distri-

-. buted.

Comnment. In other goodness-of-fit tests based on the EDF, simpleI

maximum likelihood estimators have usually been used, even when these

are biased. In this case the maximum likelihood estimator of A would

be x1  the first value of wi would then be 0, and the first

value of z would be 0 also. This would produce an infinite

vlefor the statistic A 2, so that this statistic could not be

used. The change would of course also affect the Monte Carlo points

for finite n for the other statistics, although the asymptotic

2
distribution would remain unchanged. However, since A has frequen-

tly been found to be a powerful statistic in goodness-of-fit, the

unbiased estimate of A has been used and statistic A 2is then

available for test purposes.

6



3. REGRESSION METHODS

Suppose ui , I 1,...,n is an ordered random sample from exp(0,1)

and let mi - E(u1); then E(x1) I A+Bmi as in (2) above. Test

statistics of fit can then be based on how closely the data x fit

this model. A possible test statistic is the correlation coefficient

r(xm) calculated from the pairs (xi m), - 1,...,n. Strictly

speaking this is not a correlation coefficient, since the mi are

constants and not random variables, but it has become customary to

use this terminology since r(x,m) is calculated from the usual

formula for paired random variables, as follows.

- 2 - - - 2,Let Sxx - Ei(xi-x) , S - E 1i(xi-x)(mi-m) and S m- Z (mi- )

where x and m are the means of the x-values and the m-values

respectively. Then r2 (x,m) S 2 AS xxSVA). An alternative method

of plotting is to put h1 W -ln(1-i/(n+l)l along the x-axis, Instead

of mi; hi is a good approximation to mi and is easier to calculate.

The corresponding correlation coefficient will be called r(x,h). For

both these statistics a high value (that is, approaching 1) will suggest

a good fit to the exponential model.

It is common in regression to set up an Analysis of Variance table

with SS denoting Sum of Squares:

Source of variation

Regression SS - 2/S

Error SS - /S

•.Total SS = SX

;'
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The Error SS may also be written E(xix,) where xi  A
£ i

and is clearly also a measure of how well the data fits the estimated

2line (2); in fact Error SS/Total SS - T - 1-r (x,m) can be used asm

the test statistic, with high values of T leading to rejection of

Ho . The parallel statistic Th - 1-r2(x,h) could be used also; some

critical values for use with censored samples have been given by Smith

and Bain (1976, Table III). These were found by Monte Carlo sampling.

In Table 4 of this paper are given critical values for Tm, and further

values for Th. These are based on Monte Carlo samples, using 10,000

samples for each n. For Table III of Smith and Bain (1976) the number

of Monte Carlo samples was 100,000/n, so that the values in Table 4

for n > 10 might be expected to be more accurate.

Example. For the example quoted in Section 2, we have r (x,m) - 0.640

and r2 (x,h) = 0.611; the corresponding values of T and Th are 0.360

and 0.389. Reference to Table 4 shows these statistics to be clearly

sif "ficant at level 0.01; thus the hypothesis that these data are

exponential is rejected.

An alternative method of measuring the goodness-of-fit was intro-

least squares estimate of B given from the linear model (2) with the

estimate obtained from the sample variance. The resulting test statistic

WE is given by

n(x-x(1 )2E E

W (n-I)S2

Tables of percentage points for WE, for n from 3 to 100, have

8
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been given by Shapiro and Wilk (1972). The test is a two-tailed test.

The value of WE is 0.1742, and reference to Table 1 of Shapiro and

Wilk (1972) shows this to be highly significant in the lower tail, so

again H0 will be rejected.

There is a weakness in connection with WE. It is possible to

find other distributions for which the limit of fx-x( 1 ))/Sx. as

n--co, is the same as that for the exponential, i.e. 1, and the

test based on WE will not necessarily be consistent; this was noted

by Sarkadi (1975). A distribution with this property, for example, is

the Beta(a,b) distribution, with a < 1 and b - a(a+l)/(l-a); two

pairs (a,b) are (1/4,5/12) and (1/2,3/2). Monte Carlo Samples

of size n were taken from Beta(1/4,5/12) and the percentage of 1000

samples rejected by WE in a test for exponentiality at the 10% level

were recorded. The results were, for n - 10, 15.8%; for n - 20, 9.4%;

for n - 50, 7.2%; and for n - 100, 2.2%. Corresponding percentages for

the statistic A2 were 61.9%, 92.4%, 100.0% 100.0%. For the same

sample sizes, and for samples from the Beta (1/2,3/2) distribution,

the percentages rejected were, for WE, 7.7, 5.8, 4.4, 1.5; and for

A22

A, 22.1, 38.2, 73.1, 96.4. The inconsistency of WE is thus apparent.

In contrast, Gerlach (1979) has shown that r2 (x,m) (and hence Tm)

always gives a consistent test and this would appear to be true for

r (x,h) and Th also.

V. 9



4. POWER STUDIES

The efficiencies of the above methods of dealing with unknown A

have been examined by extensive Monte Carlo studies. Random spaces

* of size n were taken from a broad range of distributions including

especially those distributions such as the Weibull, gammna and lognormal

* distributions, which are used in the literature as practical alternatives

to the exponential in models for reliability studies or renewal processes. .-

These were then tested for exponentiality using the several methods

* described above, and tables prepared showing the percentage of samples

* declared significant when the test was of size at. It was noted byj

Stephens (1974) and again by Dyer (1974) that knowledge of the exact

* values of parameters (in the context of testing for normality) does

* not always help in deciding on the distributional form; the power of

the test against densities of different shape is greater when the

* statistician estimates his own parameters. For this reason, tables

were prepared to compare the results for A unknown, with those

obtained when A was assumed known (Case 4 above). Powers for A

known are given first, in Table 5. They agree within sampling fluctua-

tions with previous values given in an unpublished technical report

* by Stephens (1978). Table 6 shows the results for Method 1 (subtract-

* ing the minimum and treating as Case 4), Table 7 gives results for EDF

statistics with A and B estimated and Table 8 compares the best

*of the EDF statistics with the Shapiro-Wilk W E and with the correlation

22

r (x,h). Van Soest (1969) also give. some power studies against Gaumma

alternatives, and our results agree where they overlap.

10
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Comments. (a) There is, overall, a reduction of power for EDF

statistics when A must be estimated, in contrast to the situation

in testing for normality using these statistics (Stephens, 1974;

Dyer, 1974).

(b) Of the EDF statistics, A2 is best on the whole, for both

methods 1 and 3, though W2 is close behind. D+ or D7 will

usually be more powerful than A2, but their limitation is that

one must know which of the two should be used.

(c) In a comparison of methods 1 and 2, both of which use EDF

statistics, A2 with method 2 is overall slightly better than A2

with method 1. When there is a very high probability of small values

2
(e.g. for Xl, or Weibull (0.5)), method 1 is better. These differ-

ences extend to the other statistics also.

(d) From Table 8, where A2 and W2 with method 2 are compared

with the regression statistics, it can be seen that the simple regres-

sion statistics T and Th are poor in power, particularly for large

sample sizes. Th is mostly worse than T.

(e) Statistics WE, aid W or A2 , are competitive with each

other, with sometimes the former statistic and sometimes the latter

pair being more powerful. There are indications that for some alterna-

tives, e.g. Beta (1,4), the half-normal and the log-normal distributions,

WE Improves with large samples. But the serious drawback that WE is

inconsistent, and so will rarely detect certain distributions even with

large samples, will put WE out of favour with many statisticians.

11



(f) If D+ , D-, or WE are to be used, some indication of

the nature of the alternative would have to be available. Of course,

D and D can both be calculated, and this is a useful general pro-

cedure towards an analysis of the data; but if then the most signifi-

cant statistic is chosen for a test, there will be an unknown change

in the true significance level. In view of these reservations involving

the other statistics, our overall recommendation would therefore be

to use method 2 with A2, as described in Section 2, for an overall

omnibus statistic for this problem.

This work was supported in part by the National Science and

Engineering Research Council of Canada, by the U.S. Office of

Naval Research, and by the U .K. Science Research Council; these

Agencies are thanked for their assistance.
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TABLE 1

Upper tail percentage points for /ID+, %/nD-, /D V, I 2 U2,

and A , for a test of exponentiality with location and scale para-

meters estimated as in Section 2.

a) Statistic n/D+

Upper tail significance level a

.25 .15 .10 .05 .025 .01

5 .491 .569 .639 .743 .825 .917

10 .580 .674 .745 .S51 .952 1.038

15 .610 .700 .768 .S72 .978 1.077

20 .624 .716 .785 .894 .995 1.108

25 .635 .725 .799 .909 1.010 1. 125

50 .660 .758 .832 .943 1.051 1.163

100 .682 .778 .853 .967 1.074 1.189

.723 .820 .886 .996 1.094 1.211

b) StatistLc /n-D

5 .627 .705 .753 .821 .891 .955

10 .671 .761 .825 .916 .993 1.089

15 .638 .783 .842 .933 1.022 1.111

20 .696 .791 .855 .949 1.041 1.132

25 .702 .795 .860 .958 1.052 1.149

50 .710 .807 .874 .976 1.072 1.178

100 .717 .814 .879 .984 1.089 1.192
CO .723 .820 .886 .996 1.094 1.211

c) Statistic VnD

5 .683 .749 .793 .865 .921 .992

10 .753 .833 .889 .977 1.048 1.119

15 .771 .865 .912 1.002 1.079 1.163

20 .786 .872 .927 1.021 1.099 1.198

25 .792 .878 .936 1.033 1.115 1.215

50 .813 .879 .960 1.061 1.149 1.257

100 .824 .911 .972 1.072 1.171 1.278

* .840 .927 .995 1.094 1.184 1.298
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TABLE I Continued

.25 .15 .10 .05 .025 .01

d) Statistic V/nV

5 1.098 1.186 1.234 1.314 1.400 1.494

10 1.194 1.294 1.363 1.461 1.556 1.662

15 1.225 1.325 1.392 1.504 1.596 1.701

20 1.245 1.340 1.419 1.536 1.635 1.769

25 1.260 1.366 1.438 1.559 1.658 1.796

50 1.292 1.400 1.481 1.600 1.701 1.847

100 1.310 1.419 1.502 1.547 1.740 1.897

,i, 1.334 1.444 1.532 1.656 1.770 1.910

e) Statistic W7

5 .083 .102 .117 .141 .166 .197

10 .097 .122 .142 .176 .211 .259

15 .103 .130 .151 .188 .229 .281

20 .106 . 133 .157 .195 .237 .293

25 .107 . 115 .160 .199 .2/a 7 .301

50 .111 .141 .166 .209 .256 .319

100 .113 .144 .170 .215 .263 .328

.116 .148 .175 .222 .271 .338

f) Statistic U2

5 .068 .083 .093 .113 .131 .153
10 .075 .094 .108 .131 .155 .187

15 .080 .099 .114 .139 .165 .200

20 .082 .102 .117 .143 .170 .207

25 .083 .104 .119 .146 .173 .212

50 .087 .108 .124 .152 .180 .223

100 .089 .110 .126 .155 .184 .229

.090 .112 .129 .159 .189 .236

2
g) Statistic A

5 .460 .555 .621 .725 .848 .989

10 .545 .660 .747 .920 1.068 1.352

15 .575 .720 .816 1.009 1.198 1.495

20 .608 .757 .861 1.062 1.267 1.580

25 .625 .784 .890 1.097 1.317 1.635

50 .680 .838 .965 1.197 1.440 1.775

100 .710 .875 1.008 1.250 1.510 1.855

.736 .916 1.062 1.321 1.591 1.959 16

d . ". "'- 7 '' '-' '.'" -' .' -" '". " '' . .". .- - . . . ."." .,



TABLE 2

Modifications and percentage points for the mod fied sattlstics 2  2 A2

Upper tail significance level 0

Statistic Modification .25 .15 .10 .05 .025 .01

w2  W2(1 + 28/n - 3/n2) .116 .148 .175 .222 .271 .338

2 2 +2.3 3 2
SU (I + /n - 3n2) .090 .112 .129 .159 .189 .230

A2  A2 (1 + 5.4/n- l1/n2) .736 .916 1.062 1.321 1.591 1.959

I.1

.1

17
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TABLE 3

Thirty-two ordered values of modulus of rupture for Douglas Fir

and larch two-by-fours.

43.19 49.44 51.55 55.37 56.63 67.27 78.47 86.59
90.63 92.45 94.24 94.35 94.38 98.21 98.39 99.74
100.22 103.48 105.54 105.54 107.13 108.14 108.64 108.94
109.62 110.81 112.75 113.64 116.39 119.46 120.33 131.57

Values and-significance levels~ of the regression and EDF test
statistics for exponentiality calculated on the above data.

Statistic valuie significance level a

VnD +1.115 <.025

Vail) 1.989 <.01

N/D1.989 <.01

VnV 3.104 <0

W21.066 <0

U 2  0.780 <.01

A 2  5.097 <.01
2r (xm) 0.640 <.01

r 2(x,h) 0.611 <.01

W E 0.174 <.01



TABLE 4

Percentage points for T. l-r (x,u) and for Tb - 1-r (xh)

Statistic T Upper tail a-level

n .25 .15 .10 .05 .025 .01

5 .140 .178 .201 .261 .328 .392

10 .104 .133 .156 .192 .232 .272

15 .087 .110 .129 .163 .194 .232

20 .076 .096 .113 .141 .169 .210

25 .065 .083 .097 .123 .152 .189

50 .044 .056 .067 .085 .108 .143

100 .028 .036 .043 .057 .074 .105

.000 .000 .000 .000 .000 .000

Statistic Th

5 .136 .167 .192 .235 .285 .352

10 .102 .129 .154 .199 .234 .285

15 .084 .110 .132 .170 .207 .259

20 .073 .097 .116 .152 .191 .241

25 .064 .084 .102 .135 .175 .223

50 .044 .060 .073 .101 .133 .176

100 .029 .040 .050 .069 .094 .129

.000 ,000 .000 .000 ;.000 .000

19
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TABLE 5

Power Comparisons: A known

The table shows the percentage of 2500 samples declared significant
by the statistic, when the test used was n 10% test.

Alternative Sample +2 2 2
distr. size D 1) 1) VU

Beta (1,4) 10 3.6 16.8 11.7 11.4 1.3.0 13.5 10.6
20 2.5 22.7 15.4 14.4 L7.7 15.7 14.4

50 .t 39.5 27.4 23.6 31.2 24.4 27.8

Chi-square 1 10 54.0 1.7 33.6 30.9 38.1 33.6 56.2
20 72.2 0.7 57.2 50.4 62.6 53.8 71.7
50 96.5 1.0 91.4 87.3 94.5 89.0 98.3

Chi-square 4 10 1.2 43.3 32.5 29.7 37.9 34.4 31.7
20 1.3 68.7 56.1 50.8 63.7 55.5 61.6
50 4.5 95.8 90.5 86.7 95.0 90.6 96.3

Half-cauchy 10 53.9 2.8 42.7 36.7 45.1 37.8 46.0

20 75.R 0.8 65.6 57.7 68.1 59.2 68.5
50 95.4 0.0 92.8 88.5 94.2 89.1 93.9

Ialf-normal 10 1.6 26.2 19.7 19.0 21.2 20.4 17.0
20 0.8 38.6 27.0 24.8 31.7 27.2 27.4
50 1.0 66.5 54.4 48.7 62.1 51.6 58.8

Log-normal(1) 10 16.0 14.4 16.6 16.3 17.4 17.5 14.9
20 22.5 15.6 22.5 23.2 25.6 26.5 24.8
50 36.0 23.8 36.7 48.4 43.3 51.2 50.5

Los-norm(2.4) 10 91.2 0.2 83.2 78.3 86.0 79.8 89.8
20 99.6 0.0 98.4 97.0 99.1 97.0 99.4
50 100.0 0.1 100.0 100.0 100.0 100.0 100.0

Uniform 10 3.4 53.1 42.2 47.9 51.5 48.0 44.7
20 17.6 80.0 69.0 78.5 81.2 74.7 77.5
50 84.9 98.8 97.0 99.7 99.4 98.6 99.8

Wetbull (0.5) 10 79.4 0.3 63.8 57.1 68.9 59.1 81.1
20 95.2 0.0 91.0 84.1 92.2 86.2 96.8
50 100.0 0.5 100.0 99.9 100.0 99.9 100.0

Weibull (2.0) 10 2.3 75.7 65.8 64.1 76.2 69.3 69.6
20 9.8 96.4 91.8 91.8 97.0 93.8 96.6
50 49.8 100.0 100.0 100.0 100.0 100.0 100.0
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TABLE 6

Power Co parisons using Mthod I (subtracting X, from aU others).

The table shows the percentage of 2500 samples declared significant
by the statistic, when the test used was a lOZ test.

Alternative Sample 2 2 2
distr. size D D D V W U A

Beta (1,4) 1.0 4.4 16.8 1.2.5 12.0 13.8 13.1 11.6
20 2.9 22.4 1.4.8 14.6 17.4 15.0 14.8
50 1.2 38.7 27.0 23.0 31.0 24.0 27.0

Chi-square 1 10 40.3 2.5 23.0 21.6 25.3 22.2 36.6
20 63.2 1.0 46.9 40.7 51.2 44.4 64.1
50 94.4 1.0 87.3 81.6 91.3 84.9 96.0

Chi-square 4 10 2.6 24.8 1.8.2 16.4 20.4 18.4 15.6
20 1.4 42.1 31.0 28.9 35.0 30.6 31.7
50 2.2 78.0 68.0 63.5 74.5 67.3 74.6

Half-cauchy 10 53.8 2.6 41.8 35.7 44.4 37.5 45.4
20 75.6 0.6 65.5 57.3 68.4 58.8 68.7
50 95.3 0.0 92.5 88.4 94.0 88.9 93.9

Half-normal 10 1.8 25.0 17.7 17.0 19.6 18.8 15.3
20 1.2 34.8 24.6 22.5 28.3 24.5 23.8
50 0.9 64.9 51.8 47.1 60.1 49.8 56.6

Log-normal(1) 10 21.8 7.2 14.2 13.0 15.5 13.8 14.9
20 29.1. 6.0 20.7 16.3 22.6 18.9 22.2
50 42.4 5.4 32.1 29.5 36.4 32.3 35.3

Log-norm(2.4) 10 86.9 0.4 76.3 71.6 79.4 73.4 84.6
20 99.0 0.0 97.4 95.4 98.3 95.8 99.1
50 100.0 0.1 100.0 100.0 100.0 100.0 100.0

Uniform 10 3.2 48.5 37.9 43.0 45.5 43.6 39.0
20 15.4 78.0 66.7 75.8 78.0 72.8 74.950 83.0 98.9 96.8 99.7 99.6 98.3 99.6

Weibull (0.5) 10 68.4 0.5 52.5 45.2 55.4 48.2 66.4
20 92.0 0.0 85.3 77.2 88.0 79.8 92.8
50 100.0 0.4 100.0 99.6 100.0 99.8 100.0

Weibull (2.0) 10 1.1 42.6 33.2 31.4 38.9 34.8 31.8
20 2.9 76.0 65.4 63.4 74.2 66.4 70.1
50 23.2 99.5 98.3 98.0 99.4 98.7 99.3
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TABLE 7

Power Comparisons using Method 2

(using unbiased estimates of A and B)

The table shows the percenLage of 2500 samples declared significant
by the statistic, when the test used was a 10% test.

Alternative Simple + 2 2 2
distr. size D - V W U A

Beta (1,4) 10 4.3 16.0 11.8 11.6 13.7 11.9 12.9
20 3.1 22.0 15.1 15.6 17.8 14.4 16.4
50 1.0 38.6 26.9 22.8 32.1 24.7 29.1

Chi-square 1 10 39.8 2.4 23.5 22.1 26.8 25.4 31.6
20 64.3 0.9 48.1 42.8 52.4 46.1 59.1
50 93.8 1.0 97.3 81.5 91.6 85.7 95.0

Chi-square 4 10 2.5 23.6 16.4 16.1 20.0 16.7 18.5
20 1.6 41.6 31.1 29.1 35.5 29.7 33.9
50 1.7 77.9 67.7 63.3 75.7 67.8 76.0

Half-cauchy 10 53.4 2.4 42.0 36.0 45.9 40.6 48.0
20 76.3 0.6 66.1 53.8 69.1 61.2 70.3
50 95.1 0.0 92.5 88.4 94.3 89.6 94.2

Half-normal 10 1.5 23.9 16.7 16.5 1.9.4 17.0 17.8
20 1.4 34.2 24.8 23.9 28.6 23.2 26.2
50 0.7 64.8 51.5 46.7 61.2 50.3 59.2

Log-normal(1) 10 20.3 6.7 14.4 13.0 16.1 14.5 17.0
20 29.8 5.9 21.3 17.9 23.3 19.4 24.1

50 40.6 5.4 32.1 29.3 37.2 33.1 37.4

Log-norm(2.4) 10 86.6 0.3 76.9 71.9 80.4 77.5 82.9
20 99.0 0.0 97.5 95.8 98.5 96.5 99.0

50 100.0 0.1 100.0 100.0 100.0 100.0 100.0

Uniform 10 2.5 47.2 35.6 42.6 45.0 40.4 44.8
20 16.7 77.6 66.8 77.4 78.4 71.2 79.2
50 80.9 98.9 96.8 99.7 99.6 98.3 99.7

Weibull (0.5) 10 68.0 0.5 53.2 45.8 57.3 53.2 62.1
20 92.5 0.0 86.0 78.6 88.5 82.4 91.0

50 100.0 0.4 100.0 99.5 100.0 99.8 100.0

Weibull (2.0) 10 0.8 41.6 31.4 30.8 38.4 31.8 36.3
20 3.4 75.8 65.5 65.0 74.6 65.2 73.2
50 20.7 99.5 98.3 98.0 99.4 98.8 99.4
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TABLE 8

Power Comparisons: regresston and EDF statistics

The table shows the percentage of 2500 samples declared significant

by the statistic, when the test used was a 10% test.

Alternative Sample
distr. size Tm  h  W W Am IiE

Beta (1,4) 10 1.3.4 8.6 11.4 13.7 12.9
20 13.2 5.6 17.1 17.8 16.4
50 0.7 43.5 32.1 29.1

Chi-square 1. 10 13.4 18.4 25.0 26.8 31.6

20 17.8 23.0 39.0 52.4 59.1
50 29.4 36.5 78.6 91.6 95.0

Chi-square 4 10 13.5 9.8 16.0 20.0 18.5
20 13.2 7.5 29.2 35.5 33.9
50 19.4 9.4 72.7 75.7 76.0

Half-cauchy 10 36.8 44.1 48.3 45.9 48.0
20 63.0 68.1 71.6 69.1 70.3
50 92.0 93.8 96.0 94.3 94.2

Half-normal 10 15.8 10.2 17.0 19.4 17.8
20 19.3 9.3 29.6 28.6 26.2
50 32.2 12.6 72.4 61.2 59.2

Log-normal(l) 10 14.4 19.0 19.1 16.1 17.0
20 24.4 29.5 26.5 23.3 24.1
50 42.8 49.4 47.4 37.2 37.4

Log-norm (2.4) 10 54.2 64.4 76.4 80.4 82.9
20 81.5 86.6 96.0 98.5 99.0
50 98.8 99.1 100.0 100.0 100.0

Uniform 10 56.0 40.2 48.0 45.0 44.8
20 88.7 71.3 82.6 78.4 79.2
50 100.0 99.5 99.8 99.6 99.7

Weibull (0.5) 10 30.3 40.6 54.4 57.3 62.1
20 49.8 58.4 82.0 88.5 91.0
50 82.5 85.8 99.4 100.0 100.0

Weibull (2.0) 10 27.4 18.8 37.8 38.4 36.3

20 38.8 22.0 73.3 74.6 73.2
50 71.6 48.0 99.7 99.4 99.4

23

". . .. . . . . . . . . . . . . . . . . .. . " 
"

L



* UNCLASSIFIED
SECURITY CLASSFICATION OF T"Ill PAG(AW8000001

REPOR DOCMENTTIONPAGEREAD IRSTiUCTOUS
REPN DM ENTTM AGEBEFORE COMPLETING FORM

1REPORT NUN1119 IL. DOW ACCESIO.N S RECIPIEN T CATALOG "NDMER
336 Ff~f/7/ __ _ _ _ _ _ _

4. TITL.E (O 84611#10) S. TYPE Of REPORT & PERIOD COVERED

TESTS FOR EXPONENTIALITY WHEN ORIGIN AND SCALE TECHNICAL REPORT
PARAMETERS ARE UNKNOWN

41. PERFORING~l ORG. REPORT "UiNDER

T. AUwOR) 6. CONTRACT DR GRANT MNIUUWOa)

JOHN SPINELLI AND MICHAEL A. STEPHENS NOO014-76-C-0475

9. PERFORMING ORGANIZATION MNZ AND ADDRESS If. PROGRAMEESTPOC.TS
DEPT. OF STATISTICS
STANFORD UNIVERSITY, STANFORD, CALIF. NR-042-267

It. CONTROLLING OFFICE NAME AND ADOORESS It. REPORT OATS

STATISTICS & PROBABILITY PROGRAM4 (code)411(SP)) AUGUST 2, 1983
OFFICE OF NAVAL RESEARCH 7.HNIE FPO
ARLINGTON$ VA. 22217 2
14. MONITORING AGENCY MNZ A060REUEIf 4110~ 1010 3;XUb @4W) 56. SECURITY CLASS (*1 IN@ Wo)

UNCLASSIFIED
S*9A FICATS IDW11RAN~l

16. OISTRIOUTION STATEMENT (of We. R0..f

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

IOISTRIS8UTION STATEMINENT (Of OW ab6&mU MWhedm 0101 U2& 56 INO e0n Rm4)

IS. SUPPLEMENfTARY NOTE8

III. KEaY WORDS -Crrelation tests of fit; IN? statistics; ED? tests;

iponentlal distribution; goodness-of-fit tests;

regression tests of fit.

2S. LISTRACT (C.Uhm AI&v..d N aee d~j aS~e

K * PLEASE SEE REVERSE SIDE

.0 ,",143 EToNFMVSSG.g UNCLASSIFIED



UNCLASSIFIED
IsMt r csASma. OF Tons Pas two" 0 iMii

0. ABSTRACT

TESTS FOR EXPONENTIALITY WHEN ORIGIN AND SCALE

PARAMETERS ARE UNKNOWN

By

John Spinelli and

Michael A. Stephens . )

iSeveral methods are examined for testing for the exponential

distribution, when both the scale and location parameters are un-

known. Percentage points are given for EDFItests, in which both

parameters are estimated from the data, and the tests are compared for

power with EDF tests where only the scale parameter is unknown. In

addition, power studies are reported to compare these tests with other

goodness-of-fit techniques for the exponential distribution,

particularly those based on regression methods, and it is found that' " A2
the EDF statistics Wi and A have overall good power properties.

UNCLASSIFIED

_ * ~ . ;.-** .. * . -" .. *: GO--"- -. . 0...



FILMED

D T I CA 09 ad


